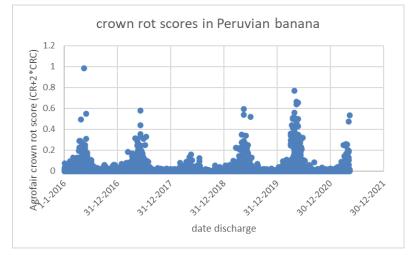
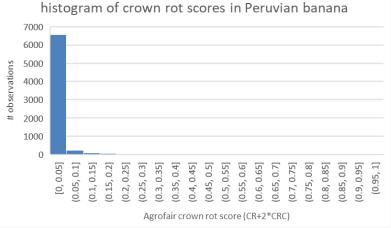
Assessing the harvest quality of organic bananas

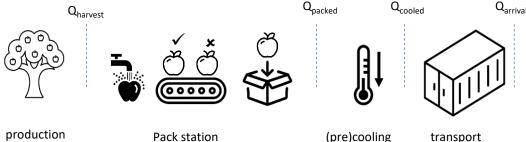
Project no. SMP24019, final presentation

11-12-2024, Dr. Leo Lukasse


Idea


- Aim: better measure/estimate initial quality of organic bananas
- Consortium: Agrofair, Maersk, Tulipan Naranja, WR
- Approach: literature study, interviews, stakeholder discussions, field visits, field tests

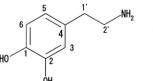
Results


- Crown Rot is seasonal
- Big difference between years. Why?
- Within season there is big difference between batches. Why?

Results

"Initial" quality is too simple production

Pack station


transport

- Harvest quality literature study
- Packed quality brain storm sessions, experiment plan
- Cooled quality experiment plan

Harvest quality – literature study

- Harvest maturity indictors
 - Weather pattern indicative of fungal growth (~30-40 days before harvest)
 - Orchard/plantation management (angularity, internal colour, days from full bloom)
- Measuring ethylene production early in the chain (new ethylene sensors development)
 - Ethylene production of fruit is linked to days to ripen (Chillet et al., 2005)
 - Indictor of fungal growth (*Colletotrichum*)
 - Ethylene attenuates chilling injury
- Measure fungal resistance of fruits over the season (link with dry and wet period)
 - Dopamine (in the green peel) inhibits *Colletotrichum*
 - Dopamine also ameliorates chilling injury
 WAGENINGEN
 UNIVERSITY & RESEARCH

(Ali et al., 2023)

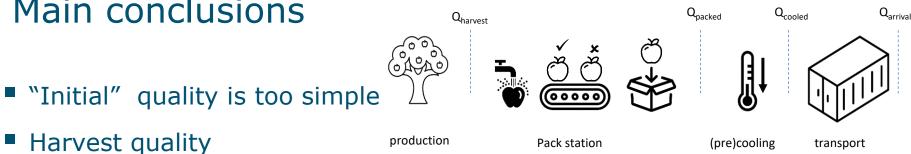
(Muirheid, and Deverall, 1984)

(Mitcham et al., 2024)

(Zhou et al., 2022)

Packed quality

- Possible factors:
 - Is knife, used for cutting from bunch, clean?
 - Is water in bleeding basin clean?
 - Post-bleeding washing/spraying/cleaning steps
- Field experiment design written (too late): in 1 pack station apply different treatments, mark cartons, evaluate differences after arrival in NL.
- Field experiment should be executed in April.
- Options for monitoring bleeding basin water quality explored



Cooled quality

- Possible factor:
 - duration between packing and reaching optimal storage temperature
- Field experiment design available: apply different treatments (fast/slow cooling), mark cartons, evaluate differences after arrival in NL.
- Field experiment should be executed in April.

Main conclusions

- Dopamine as indicator of banana resistance?
- Investigate packhouse hygiene
 - Idea 1: field experiments
 - Idea 2: monitor washing water turbidity
- Precooling effects

Harvest quality

• Field experiments

Next steps

- Follow up: PPP IQ4DT submitted Aug. 2024. Rejected.
- Consortium: Agrofair, Compagnie Fruitière, Maersk, Westfalia, Driscoll's, Hemdahl, SmartSense, Vertigo
- Follow-up instruments
 - plan A, PPP 2024
 - plan B, PPP 2025 or ????

AgroFair Does Controlled Atmosphere Reduce Crown Rot in Organic Bananas? Johannes W.H. van der Waal, BEng., MSc

AgroFair Europe B.V., Barendrecht, Netherlands

Conclusions

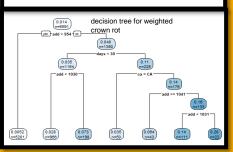
- 1. Crown rot (CR) susceptibility is related to fruit age - accumulated degree.days
- 2. A higher pulp temperature (PT) at arrival and a longer transit time are related to increased crown rot incidence. PT cause or effect? Or both?
- 3. Not using Controlled Atmosphere (CA) increases the incidence risk by 1.66 / 1.99 for mild and severe crown rot.
- 4 CA is useful in situations with add and transit times in highest guartiles.
- 5. Further research: Extend to other countries, predict CR with machine learning models.

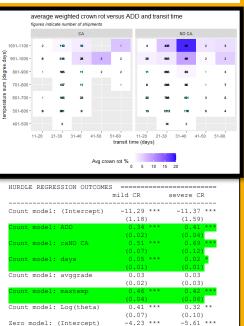
Introduction

- 1. Organic bananas are an important fruit category.
- 2. No synthetic chemicals post-harvest antifungal protection of the crown is a challenge
- 3. Organic post-harvest products are prone to fraud (adulteration with guaternary ammonium compounds).
- 4. CA is reported to reduce crown rot in tests, but does it work on a commercial scale? Is it worth the additional cost?

Experimental design

- 1. A data set of 6591 container shipments of organic bananas from Peru to Europe, 540 with CA. 6051 without CA.
- 2. Crown rot assessment according to industry protocol, with and without CA.
- 3 Weather data are retrieved from meteostat.net API, for Piura. Peru
- 4. Accumulated degree days (add) computed on a 77 day growing cycle with 13.5°C cut-off.
- 5. Many zero values in dependent variable : hurdle regression, a combination of a binomial model for the zeros and a zerotruncated negative binomial count model. (library pscl).
- 6. Decision tree on weighted variable (C = CR + 2* CRC), (library rpart).




add	: accumulated degree days > 13.5°C
ADD	: add/100
ca	: dummy variable for CA
days	: transit time between pack and discharge
avggrade	: average gride (girth) of the fruit
maxtemp	: maximum pulp temperature on arrival
season	: dummy variable for crown rot season (wk 8-25)
Mild CR/ CR:	<20% of crown affected
Severe CR / CRG	: > 20 % of crown affected
с	: weighted crown rot (CR + 2 * CRC)
theta = probabil	ity of drawing 0

Results and discussion

Variable	N	Mean	Std. Dev.	Min	Pctl. 25	Pctl. 75	Max
CR	6591	0.007	0.024	0	0	0	0.43
CRC	6591	0.004	0.017	0	0	0	0.416
С	6591	0.014	0.052	0	0	0	0.98
add	6591	766.477	176.113	498.7	597.484	935.423	1054.981
са	6591						
CA	1316	20%					
NO CA	5275	80%					
days	6591	27.424	3.488	18	26	29	60
maxtemp	6591	14.826	0.562	0	14.5	15.1	23.5
1500 - (Acp 0 - 500 -	<u> </u>	\mathcal{S}	\bigvee			, , ,	- 15% CX + 2 - 10% CX - 2 - 5%
2016-01-01 2	017-01-01	2018-01-0	1 2019-01	01 2020-	01.01 20	21-01-01	- 0%

ca CA NO CA

(0.25)

(0.07)

(0.01)

13568.10

-6774.05

6591

*** p < 0.001; ** p < 0.01; * p < 0.05 std.er in ()

1.97 ***

0.08 ***

Zero model: season1

Zero model: davs

Log Likelihood

Num obs

AIC

(0.30)

(0.09)

(0.01)

7719.22

-3849.61

6591

2.31 ***

0.09 ***

Thank you

Leo Lukasse Leo.Lukasse@wur.nl Tel.: +31 317 480201

