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Program evolution
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Digital Twin distinguishing features
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Exploring a new concept in a complex domain
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Program organization
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What is a digital twin?
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Digital Landscape

Digital landscape

Real world 

Communication either manually or 
automated

Virtual world 

Based upon: Fig. 4 Tekinerdogan & Verdouw 2020
https://doi.org/10.3390/s20185103

Brett Metcalfe

https://doi.org/10.3390/s20185103


Digital Landscape
Based upon: Fig. 4 Tekinerdogan & Verdouw 2020

https://doi.org/10.3390/s20185103

https://doi.org/10.3390/s20185103


Digital Twin

Model
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…its Digital TwinReal world thing.. 
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What is a Digital Twin?
Terms from: Boje et al. https://doi.org/10.1016/j.autcon.2020.103179

https://doi.org/10.1016/j.autcon.2020.103179
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DT Definition

Digital Twin Definition

Ambiguous definitions abound. However, 
to be a Digital Twin requires:

• A virtual copy of a physical asset

virtualphysical
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Digital Twin Definition

Ambiguous definitions abound. However, 
to be a Digital Twin requires:

• A virtual copy of a physical asset

• Two-way interaction between virtual and 
physical assets

• Interaction must initiate some feedback

virtualphysical

Increase feed

DT Definition



Digital Twin Definition

Ambiguous definitions abound. However, 
to be a Digital Twin requires:

• A virtual copy of a physical asset

• Two-way interaction between virtual and 
physical assets

• Interaction must initiate some feedback

• Decision making process based on 
actionable knowledge

virtualphysical

Increase feed = 
happier cows

DT Definition



Flagship projects
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Sensors

Real tomato crop

Genotypes

Greenhouse model

G×E×M plant model

Virtual tomato crop

Control & decision support
Genotype selection

Stakeholders:
growers, breeders, consultants, suppliers

Data processing 
Parameter/state estimation

Virtual Tomato Crop



Plant measurements

• NPEC greenhouse compartment



Plant measurements

• NPEC greenhouse compartment



3D sensor-based plant phenotyping & model parameter updating

Data 
acquisition

Phenotyping

Organ segmentation

Leaf reconstruction

Stem
extraction

Parameter 
derivation

Updating tomato 
simulation model



….. and lots of handwork



Tomato and greenhouse climate simulation model

Environment

Crop

Climate model Plant model

Estimation of 
light absorbed



Me, My Diet, & I
OVERALL OBJECTIVE: 

§ To develop a digital twin that will give personalized dietary advice to 
reduce the personal after-meal triglyceride (fat) response.



Context of Me, My Diet & I
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Dietary advice for the
general population

People respond different 
to the same foods/diet



Three grand challenges
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Predicting Diet intervention

Triglycerides Triglycerides

= 1+ $%1! +
$ $ − 1 %!

2! + ⋯

+

+
III: Ontology to translate 
intake into dietary advice

II: Algorithm/Rules including 
behaviour, preferences and 

values



A dynamic model of a physical object with emphasis 
on:

(1) the connection between the physical object and 
its model, and 

(2) the use of real-time data from the physical 
object to keep the model synchronized

A Digital Twin for a Digital Future Farm 
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Soil/Crop Model

Dairy Cow Model



Work packages in DFF project
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DFF focusses on Nitrogen
twinning the N-cycle for farmers & researchers
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Scientific and societal potential

30



Scientific
potential
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Ioannis Athanasiadis, professor of Data Science and Artificial Intelligence



Societal 
potential
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Geonovum, investment proposal for GI Beraad



Future challenges
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Iterative design

Maturity levels

Collects data

Context (data storage, historic data)

Models + predictions

Exploration (scenario testing, interaction)

Optimisation

Autonomous



Using the maturity index

Digital Twin

The maturity index is
not the same as…



Readiness

The maturity index is not the
same as…

• Organisational readiness
(i.e., change management,
leadership, preparation)

Change management: 10.17576/pengurusan-2018-52-16

Organisational readiness: https://doi.org/10.1016/j.im.2018.09.001

http://dx.doi.org/10.17576/pengurusan-2018-52-16
https://doi.org/10.1016/j.im.2018.09.001


Readiness

The maturity index is not the
same as…

• Organisational readiness
(i.e., change management,
leadership, preparation)

• Scientific readiness

(ESA)Scientific readiness: https://missionadvice.esa.int/wp-content/uploads/2020/05/Science_Readiness_Levels-SRL_Handbook_v1.1_issued_external.pdf

Data science readiness: https://towardsdatascience.com/the-call-for-a-data-science-readiness-level-3355d6d8a1bb



Readiness

The maturity index is not the
same as…

• Organisational readiness
(i.e., change management,
leadership, preparation)

• Scientific readiness

• Ethical ‘readiness’ (e.g.,
technological ethical
scorecard)

Technological ethical scorecard:
https://ieeexplore.ieee.org/document/5996290

https://www2.deloitte.com/us/en/insigh
ts/industry/technology/ethical-
dilemmas-in-technology.html

Ethical Assessment:
10.1108/14779961111123223

https://ieeexplore.ieee.org/document/5996290
https://www2.deloitte.com/us/en/insights/industry/technology/ethical-dilemmas-in-technology.html
http://dx.doi.org/10.1108/14779961111123223


Technological Readiness

Some low maturity levels are 
much more harder to do/obtain 
than higher maturity levels.

Data Machine learning Autonomy



Technological Readiness

‘basic’ research project 
/experimental

applicative solution

https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf



Technological Readiness

Some low maturity levels are 
much more harder to do/obtain 
than higher maturity levels.

Connection between data collection, 
ingestion, and processing. Lack of a 
framework.

Automated data collection, e.g., of 
biological cells is expensive or not 
currently feasible. 

https://www.remotedatainc.com/



Exploring the 
potential of data 
to improve 
the quality of life 
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www.wur.eu/data

data@wur.nl

Any questions?

http://www.wur.eu/data
mailto:data@wur.nl

