

Towards a 'Micro-digester App'

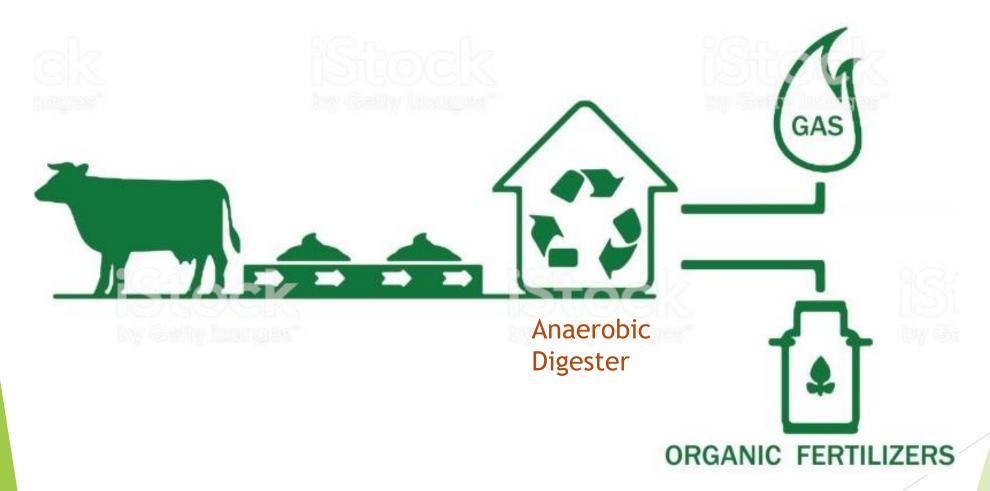
Advising African farmers on Anaerobic Digestion & Use of bioslurry as a fertilizer

Sander de Vries (Kind of Green Consulting)

Hans Langeveld (Biomass Research) Johan van Groenestijn (WUR-FBR) Maja Slingerland (WUR-PPS)

- Number of anaerobic digesters in Sub-Saharan Africa increasing rapidly
 - ➤ SNV's Africa Biogas Partnership Programme (ABPP): 50,000+ biodigesters in multiple countries including Kenya
 - Dutch entrepreneurs
- Seed money project: supported by SNV & Kenya Biogas Programme (KBP).
 - Kind of Green Consulting
 - Biomass Research
 - ▶ WUR-FBR, WUR-PPS

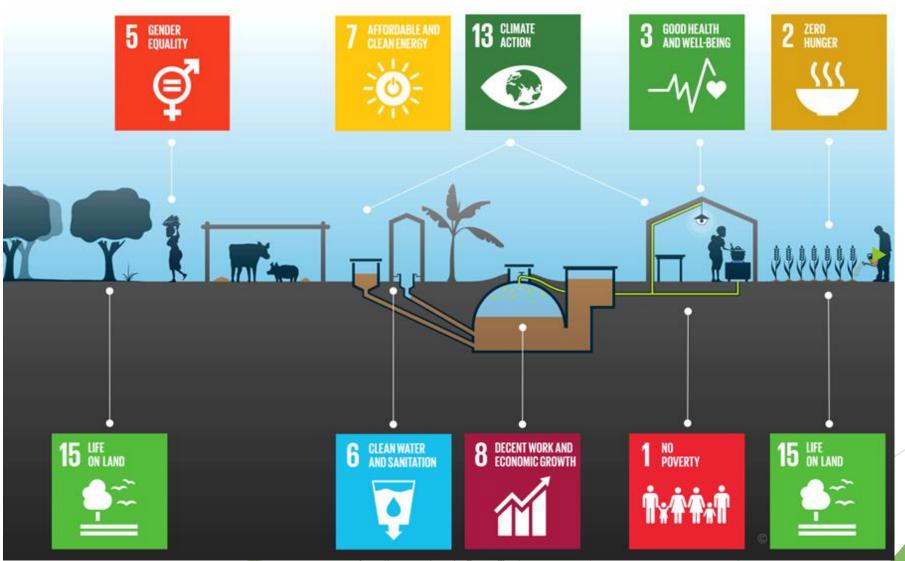
(Photo: ABPP Hivos SNV)



- Health
- No Firewood
- Women empowerment
- Etc.

(Photo: ABPP Hivos SNV)

(Photo: ABPP Hivos SNV)



- Replace mineral fertilizers -> less GHGs, reduced acidification
- Improved fertilizer quality compared with fresh manure, less pathogens
- ► Etc.

Biodigesters contribute to 10 of the 17 SDGs (Image: ABPP Hivos SNV)

Seed money project

Links with TKI innovation agendas:

Er zal gezamenlijk worden ingezet op de volgende innovatiethema's:

- resistent en stressbestendig uitgangsmateriaal, ecologisch houdbaar, gezonde bodem, plant- en diergezondheid, optimaal dierenwelzijn, biodivers, eiwittransitie;
- 2. **Circulaire systemen:** klimaatneutraal, energieneutraal, waterefficiënt, verwaarden mest, (nieuwe) groene grondstoffen, schoon en efficiënt transport, vermindering voedselverspilling, duurzame verpakkingen;
- 3. **Gezond en veilig:** gezonde en veilige producten, gezonde leefstijl, gezonde, groene (stedelijke) omgeving, vermindering antibiotica gebruik, beheersing zoönosen;
- 4. **Slimme technologie:** ICT/big data, robots, sensoren, innovatieve materialen en andere technologie die bijdraagt aan robuust, klimaatslim, circulair produceren en meer gezondheid;
- Consument en maatschappij: aankoop en consumptie van duurzame, veilige en gezonde producten, maatschappelijk draagvlak, informatie en transparantie, eerlijke prijs, consumentenvertrouwen.

Seed money project

Problems:

- Huge variation in bioslurry composition
- Knowledge on its application amongst African smallholders lacking
- Lack of clear and safe recommendations for bioslurry application in the field

This project:

- Compile knowledge on the influence of AD on fertilizer value of different feedstocks (animal manures, crop residues, food waste, etc.)
- Work with end-users

Envisaged output:

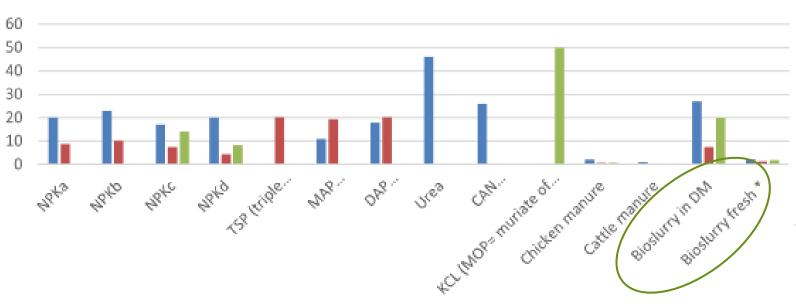
- 1. FACTSHEETS & CALCULATION RULES
- 2. PROTOTYPE MOBILE APP
- 3. FOLLOW-UP PROJECT!

- 1. <u>Fact sheet 1: Anaerobic Digestion.</u> Highlights:
 - Nutrient composition of cattle manure digestate/bioslurry
 - ▶ Changes in composition during anaerobic digestion of cattle manure
 - ▶ Relationship Biogas vs. loading rate
- 2. <u>Fact sheet 2: Fertiliser value of bioslurry.</u> Highlights:
 - Nitrogen cycle and processes
 - Forms of N,P and K taken up by plants.
 - Synchronisation of supply and demand of nutrients
 - Fertilizer needs for maize grain yield in Kenya
 - Fertiliser & Economic value of bioslurry
 - Acid soils and bioslurry value
 - Fertilizer recommendations for Banana, Napier and Coffee
- 3. Fact sheet 3: compost production from cattle manure digestate in Kenya. Highlights:
 - Prerequisites for optimal composting
 - ▶ The fate of nutrients in the composting process
 - ▶ Composting mixtures of cattle manure digestate and maize stalks

Bioslurry composition highly variable

Property	Unit	Value
Total Solids	% of Fresh Matter	1.5 - 45.7
Volatile Solids	% of Total Solids	38.6 - 75.4
рН		7.3 - 9.0
N Total	% of Dry Matter	3.1 - 14
idem	% of Fresh Matter	0.12 - 1.5
Nitrogen NH₄	% of total N	35 - 81
Total phosphorus	% of Dry Matter	0.2 - 0.35
idem	% of Fresh Matter	0.04 - 0.26
Total potassium	% of Dry Matter	0.19 - 4.3
idem	% of Fresh Matter	0.12 - 1.15

Source: adapted from Nkoa (2013; cattle manure)



- Average composition Kenyan bioslurry (NPK) estimated from composition of cow manure and chemical changes during AD: $N:P_2O_5:K_2O = 40:18:43$ (8% DM)
- ► High pH => stop acidification. High K => banana, coffee
- Fertilization and commercial value calculated, compared to chemical fertilizers

■ N % ■ P% ■ K%

Fertilizer needs for maize in Kenya

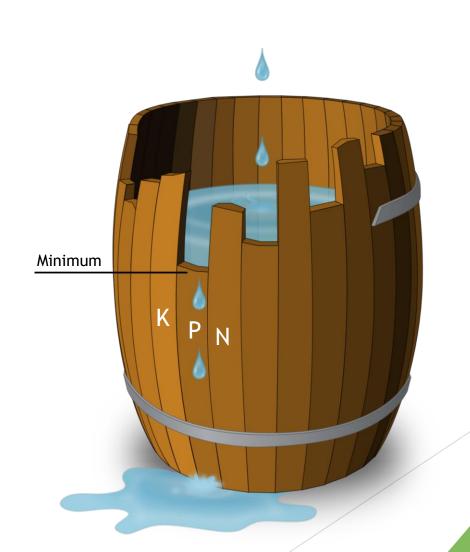
Yield gap/potential

Table 1 Yield gaps and main N inputs needed to close them

				MIN N INPUT (kg/ha) to close YW-YA by		
STATIONNAME	YA	YW	YW-YA	30%	50%	80%
Dagoretti	1.0	3.2	2.2	18	30	55
Eldoret	3.3	13.8	10.5	80	133	242
Kakamega	2.2	10.2	8.0	59	98	178
Kericho	2.6	11.3	8.7	65	108	197
Kisii	2.0	10.8	8.8	62	104	189
Kisumu	1.0	5.2	4.2	30	50	91
Kitale	3.3	10.1	6.8	58	97	176
Nakuru	2.0	2.8	0.8	16	27	49
Kenya average	1.9	7.9	5.9	45	76	138

Source: www.yieldgap.org

YA = actual yield; YW = water limited potential yield; YW-YA = yield gap



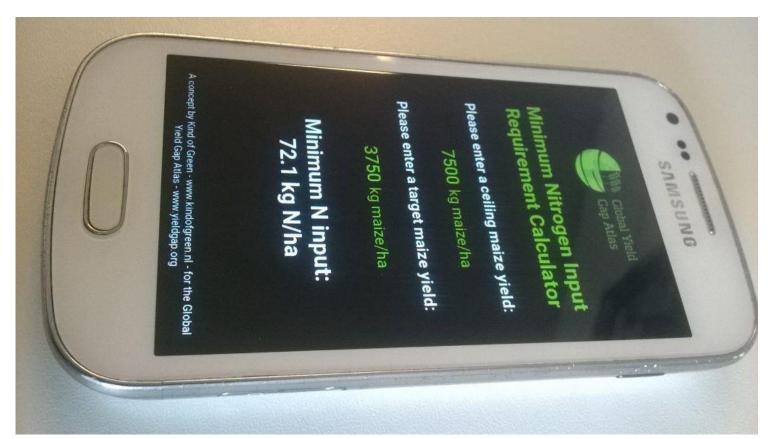
Results: Prototype Mobile (Android) App

- Advice on using bioslurry as a fertilizer: (working) prototype
 - Balanced nutrition/'QUEFTS' approach (Janssen et al., 1990)
 - ▶ Other crops to be added (e.g. coffee)
- 2. Improved digester management, optimum biogas yield: follow-up project

Input for app:

- 1. Digester & feedstock type
- 2. Location, soil type
- 3. Crop and (target) yield
- 4. Fertilizer options

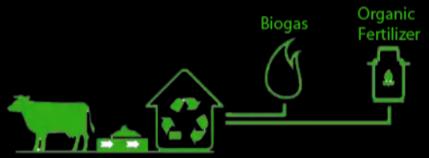
Results: Prototype Mobile (Android) App


"Fertilizer options?"

- Use organic manure (or bioslurry!), supplemented with mineral fertilizers as required, according to the 4R's:
- ► The Right elements, administered at
- ► The Right quantities, at
- ► The Right place and at
- ► The Right time.

Results: Prototype Mobile (Android) App

► Based on Kind of Green® app to estimate minimum nitrogen requirements for maize in Africa, developed for www.yieldgap.org



Mobile App - Working Prototype

Biogas Digestate Calculator

Please enter a crop (banana or maize):

maize

Please enter a (target) crop yield:

5000 kg/ha

Minimum nutrient input for maize: 43 / 5 / 28 kg NPK/ha

Nutrients in 1.6 t digestate DM / \sim 20 t FM: 43 / 11 / 32 kg NPK/ha

www.kindofgreen.nl

Follow-up?

- Incorporation as a pilot in a H2020 project?!
- Acquiring other funding
- Further development of the app

Developing/disseminate learning materials as part of a 'biodigester academy' / MOOC

- HIVOS
- Test application in practice
- Roll out!
 - Interested partners?
 - Contact hans@biomassresearch.eu
 - ▶ or contact info@kindofgreen.nl

Potential follow-up - EC H2020

CE-SFS-36-2020 – Diversifying revenue in rural Africa through bio-based solutions 1st-stage: 22-01-20; 2nd-stage: 08-09-20

Wageningen Research is coordinating a proposal: New sustainable biobased solutions to increase prosperity in East Africa (**Biobased4EastAfrica**)

Focus on developing and testing of some Key Enabling Technologies linked to existing agri-food value chains in some selected East African countries

Micro-digestion for co-production digestate-based nutrients for soil improving together with biogas for cooking will be one of the KETs that will be dealt with

2-3 European/ African stakeholders (technology providers and testing supervisors) per KET will be invited to join the consortium

Thanks for your attention!

For more information: hans@biomassresearch.eu info@kindofgreen.nl

