Valorizing nutrients from POME digestate

Upgrading and valorizing nutrients from Palm Oil Mill Effluent Final presentation SMP 17018 Wageningen, 14-12-2017

Hans Langeveld (Biomass Research) Stefan Blankenborg (Enki Energy) Foluke Quist-Wessel (AgriQuest) Juliën Voogt, Wolter Elbersen, Koen Meesters (WFBR)

Aim and Activities

Aim:

- Analyse options for nutrient recovery from Palm Oil Mill Effluent (POME)
- Assess the integration of potential technologies into an economically viable production chain
- Activities:
 - Desk study
 - Data analysis input provided by all partners
 - Field visit to Indonesia by WFBR

Partner contribution

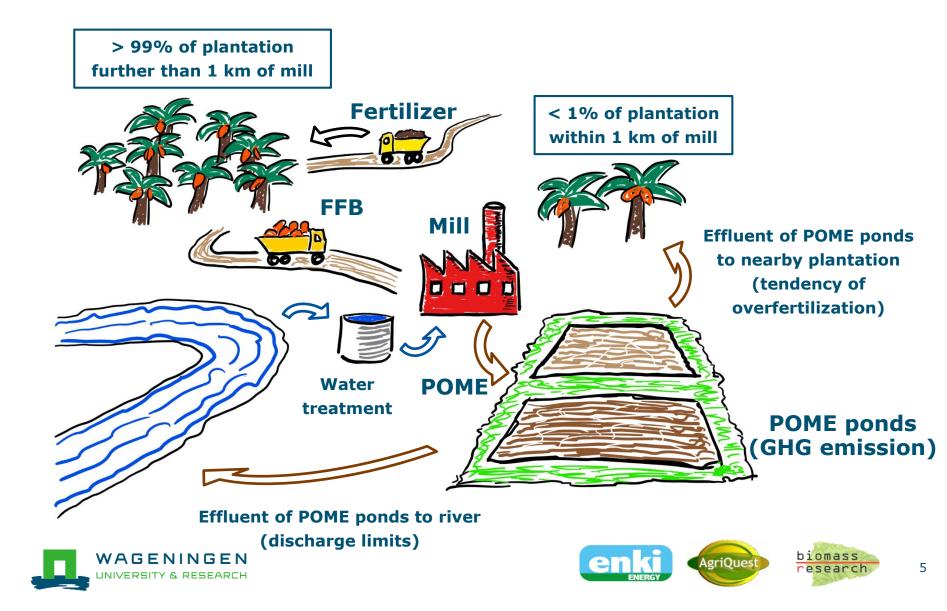
Project implementation:

• Wageningen Food and Biobased Research

Partner contribution:

- Biomass Research Project coordination; economics of nutrient replacement
- Indonesian Institutes Practices, regulations and environmental impact
- Enki Energy Technical advice
- AgriQuest Crop nutrient requirements

Introduction


Palm Oil Mill Effluent (POME): a problematic waste

- Source of spontaneous GHG emissions
- Use as fertilizer only near the mill because of high transport costs
 - Tendency of overfertilization
- Source of water pollution
 - Organic material (BOD)
 - Nutrients (eutrophication)

Current situation

Anaerobic digestion

POME is well suited for treatment in digestion tanks

- Anaerobic digestion reduces methane emissions and reduces BOD pollution
- Using minerals from POME digestate significantly increases the economic viability of digestion systems, while reducing environmental impacts of the mill
- However, the cost of the distribution of POME digestate generally is too high

Concentrating POME digestate

Screening options:

- Potassium struvite precipitation
- Bioaccumulation
- Concentration of minerals with membrane technology

7

Case definition

Production 365 d/y	Plant capacity FFB CPO POME				Eff plantation area 20467 ha			
20h/d	60 12,6 49,1 ton/h				Steam			31ton/h
7300h/y	438_92358_kton/y				Steam/FFB		0,51	
					POME/FFB			0,82
					POME/CPO			3,89
		Fresh W	DW	N	К	Mg	P	
	ton/ha.yr			kg/ha.yr				
Fresh fruit bunch	FFB	21,4	9,2	57,0	71,7	14,7	8,3	
	Steam	10,9						
Crude palm oil	СРО	4,5	4,5					
	Raw POME	17,5	1,0	11,4	32,7	5,0	2,1	
	Digested POME	16,8	0,2	6,5	28,9	5,5	1,0	
			%	g/l				
	FFB		43,0%	2,66	3,35	0,69	0,39	
	Raw POME		5,5%	0,65	1,87	0,29	0,12	
	Digested POME		1,3%	0,39	1,72	0,33	0,06	

Ref: Elbersen et al., Valorization of palm oil (mill) residues, 2013

Loh et al., Renewable and Sustainable Energy Reviews 74 (2017)

(raw and digested POME composition)

Potassium struvite precipitation

- Product: Potassium struvite KMgPO4
- Equipment: Precipitation tank & separation
- High pH (9 11) required: Addition of base required
- X Addition of salts required (Mg and PO4): Adding relative high valuable salts to obtain relative low valuable fertilizer
- Fertilizer with fixed ratio, too much PO4 for plantation
- 🗙 Mineral yield: For high K yield, low (<75%) Mg and PO4 yield and visa versa
- Rest stream: Demineralized POME digestate
- Ref: Parasad et al., Environmental Materials and Waste, 1st Ed, 2016 Xu et al., Chemosphere 84 (2011) Xu et al., Water Research 80 (2015)

Bioaccumulation

- Product: Duckweed (= animal/fish feed)
- X Equipment: Raceway ponds
 - FFB: ~ 9,2 ton DW/(ha·yr)
 - Duckweed in raceway pond: ~ 20 ton DW/(ha·yr)
 - ~ Same K conetent per ton DW in FFB and duckweed (~ 1%)
 - ~ 40% of K in FFB in POME digestate
 - ~ 20% of plantation area required for bioaccumulation
- 🗙 Mineral yield: < 75%
- 🗙 Rest stream: demineralized POME digestate
- Ref: Leng, Duckweed: A tiny aquatic plant with enormous potential for agriculture and environment, 1999

Online: http://www.fao.org/ag/againfo/resources/documents/DW/Dw2.htm

10

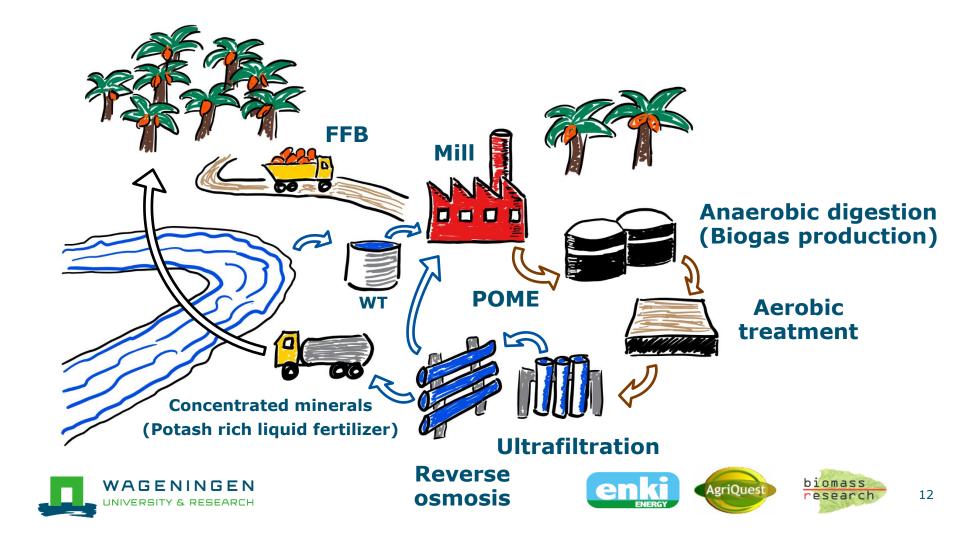
Concentration of minerals with membrane technology

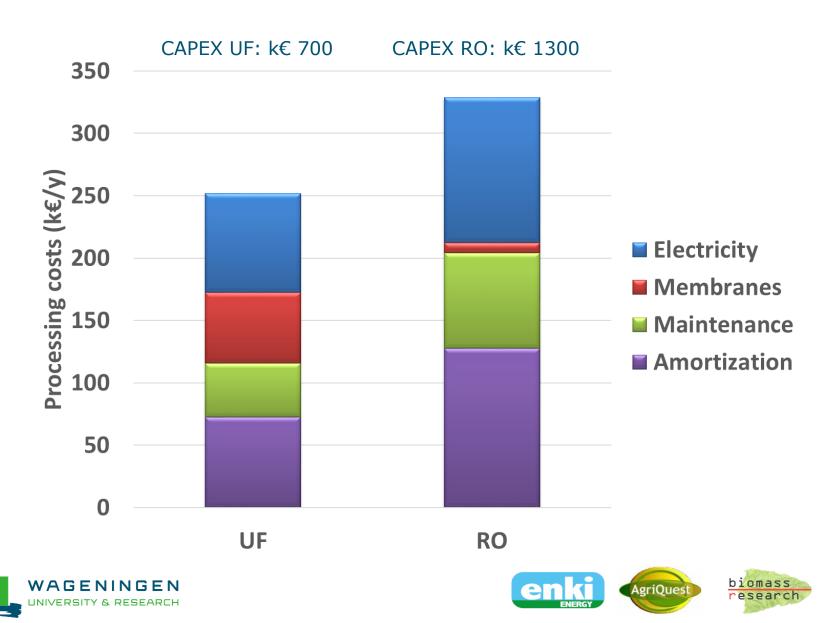
- Product:
 - Mineral concentrate 5% w/w
 - Concentration factor of 10
 - Boiler feed water
- Equipment:
 - Pretreatment -> Anaerobic digestion and aerobic treatment reduces BOD, COD, TS => Required for membrane processes!
 - Ultrafiltration (UF)
 - Reversed Osmosis (RO)
- Requires skilled operators (for cleaning, maintenance)

Mineral yield: 100%

Rest stream: None

Evaluated in more detail


(techno-economic evaluation)



11

POME to biogas and valorizing nutrients and water from POME digestate

Results: Processing costs

Conclusion

- Despite a concentration factor of 10, application costs of the mineral concentrate remain too high
- Reducing application costs of the concentrate, savings can exceed costs under scenarios of high fertilizer prices
- Improvement of membrane technology and/or reduction of membrane technology costs significantly increase profitability
 - Membrane technology should be evaluated experimentally

SMP output and follow-up

- The membrane technology is the most suitable technology for nutrient recovery
- The consortium intends to explore opportunities for
 - Experimental evaluation of membrane technology
 - Explore options for further cost reduction of ultrafiltration and reversed osmosis
 - Potential application of nutrient concentration technologies for residues generated in other biomass refinery processes

SMP output and follow-up

The outcomes of the SMP study have been submitted to The European Biomass Conference & Exhibition (EUBCE) to be presented at the 2018 Conference in Copenhagen

