

General information		
PPP-number	AF15210	
Title	Soluble Bio-based Support Structures	
Theme	Circular (Biobased Economy)	
Implementing institute	Wageningen Food & Biobased Research	
Project leader research (name + e-mail address)	Karin Molenveld, karin.molenveld@wur.nl	
Coordinator (on behalf of private	Bart de Koning (Canon)	
partners)		
Project-website address	https://www.wur.nl/nl/Onderzoek-	
	Resultaten/Onderzoeksprojecten-	
	LNV/Expertisegebieden/kennisonline/Soluble-Bio-based-	
	Support-Structures-1.htm	
Start date	01-07-2017	
Final date	15-12-2019	

Approval by the coordinator of the consortium		
The final report must be discussed with the coordinator of the consortium. The "TKI's" appreciate		
additional comments concerning the final report.		
Assessment of the report by the	X Approved	
coordinator on behalf of the	Not approved	
consortium:		
Additional comments concerning		
the final report:		

Consortium	
Mention any changes in the	No changes in the composition of the project partners, but
composition of the project	the name of 'Océ Technologies' has changed in 'Canon
partners:	Production Printing' by January 1st 2020.
partners:	Production Printing' by January 1st 2020.

Summary of the project		
Problem definition	Canon investigates options for applying own technology for 3D printing applications. Support structures that do not leave artefacts and that are environmentally benign offer advantages.	
Project goals	The objective of this project is to demonstrate that it is feasible to substitute the current 3D printing support materials, with environmentally friendly bio-based alternatives. Focus is on the use of commercially available water soluble sugar derivatives.	

Results		
Planned results in the	The planned result is the development of bio-based support products for	
original project plan	3D printing using ink jet technology, and to generate a proof of concept	
	that bio-based materials can serve as support structures in 3D printing.	
	Focus was to use commercially available sugar polyols	

Achieved results	Within the project it was demonstrated that derivatives of sugar polyols are suitable as support products using ink-jet technology as they are in the correct viscosity range at printing temperatures, are thermally stable, solidify upon cooling and are water soluble and soluble in solvents used for cleaning of printer heads. These derivatives are near commercialisation.
Explanation of changes relative to the project plan	The commercially available sugar polyol are either too viscous or do not solidify upon cooling or are not compatible with current cleaning methods.

What was the added value created by the project for:			
Participating "Knowledge Institutes" (scientific, new technologies, collaboration)	The use of sugar derivatives in this new, technical application (3 D printing using ink jet technology) was demonstrated. Insight is generated on various properties of sugar derivatives that have not been studied before and could be used in other applications.		
Participating private partners (practical application of the results, within which period of time?)	Potential new applications for sugar derivatives including new markets.		
Society (social, environment, economy)	Using sugar derivatives current support structures can be replaced reducing the amount of chemical waste and further reducing the environmental footprint of 3D printing processes.		
Possibly other stakeholders (spin-offs)	The technology can be relevant for companies that invest in the development of 3D printing applications.		

Follow-up		
Did the PPP result in one or	No	
more patents (first filings)?		
Are there any follow-up projects	At this moment no follow-up projects are planned.	
planned? If yes, explain.		
(Contract research resulting		
from this project, additional		
funding, or new PPP projects)		

Deliverables/products during the entire course of the PPP (provide the titles and/or a brief description of the products/deliverables or a link to a website. Scientific articles:

External reports:

Articles in professional journals/magazines:

(Poster) presentations at workshops, seminars or symposia.

Rene van der Meer (Océ R&D): How to print a better world @ smart materials 2019 and & rapid pro. Presentation of 3D printing for dental structures including the reference to the TKI project on water soluble support materials.

TV/ radio / social media / newspaper:

Remaining deliverables (techniques, devices, methods, etc.):

https://www.wur.nl/nl/Onderzoek-Resultaten/Onderzoeksprojecten-LNV/Expertisegebieden/kennisonline/Soluble-Bio-based-Support-Structures-1.htm

https://topsectoragrifood.nl/project/soluble-bio-based-support-structures-for-digital-printingapplications/