

General data			
PPP number	AF-16505		
Title	The Biology behind perceivable consumer benefits, Glucose (M)apping		
Theme	Health and Nutrition		
Executing research organisation(s)	Maastricht University, Wageningen University, Radboud University, Leiden University		
Project leader research (name + email address)	Prof dr Ellen Blaak e.blaak@maastrichtuniversity.nl		
Coordinator (on behalf of private parties)	Dr Rob Beudeker, theme director TIFN		
Contact person of government			
Total project budget (k€)	4.693kE		
Project website address			
Starting date	May 1 2017		
Final date	May 1 2022		

Approval coordinator/consortium

The annual report has to be discussed with the coordinator/consortium. The TKI(s) like to be informed regarding potential comments on the annual report.

The annual report is	approved
by the coordinator on behalf of	not approved
the consortium	
Potential comments regarding	
the final report	

Brief description content/aim PPP

What is the matter and what does the project contribute?

What does the project deliver and what are the effects of its delivery?

Overall objective

The overall aim of the project is (1) to obtain insight in metabolic and lifestyle determinants of blood glucose homeostasis, as well as and mental and physical performance and wellbeing and (2) to study how acute and chronic dietary and physical activity intervention alters these parameters in metabolically distinct subgroups. Based on that multiscale tissue dynamics and mathematical models on diet and lifestyle in relation to blood glucose homeostasis as well mental performance and well-being will be developed and validated.

Overview deliverables and results

	Deliverables	Status
1	Creation of classifier using machine learning approaches on characteristics of an individual that can predict to what extent that individual will respond favourably, in terms of insulin resistance, to a diet with a particular macronutrient composition	Finished
	Summary: Based on the classifier combining hypothesis based and machine learning approach for characteristics of individuals from four unique large European dietary/lifestyle interventions, participants will be divided into two metabolically different groups. The division will be based on tissue-specific	

;	insulin resistance, whether subjects are more pronounced muscle insulin	
	insulin resistance, whether subjects are more pronounced muscle insulin resistant (MIR) or more pronounced liver insulin resistant (LIR).	
	Definition of the two diets for the intervention study and assign individuals to	Finished
	two subgroups for the intervention study planned in WP2 (PERSON-study)	1 Inforted
	Summary (exact diet composition finalized): The optimal diet for MIR is a	
	moderate fat content which is high in mono-unsaturated fatty acids (HMUFA,	
	virgin olive oil) with a macronutrient breakdown of 38 E% from fat (20% MUFA,	
	10% PUFA, 8% SFA), 48 E% from CHO (<15en% mono- and disaccharides),	
	and 14 E% from protein (35-40% plant protein). The optimal diet for LIR is low	
	in fat, high in protein (LFHP) with a macronutrient breakdown of <28 E% from	
	fat (10% MUFA, 10% PUFA, 8% SFA), 48 E% from CHO (<15en% mono- and	
(disaccharides), and 24 E% from protein (35-40% plant protein), and an	
i	additional supplement of 6g of soluble fiber per day. Also, with both diets, low	
	fat, high protein products as well as the supplement are provided by industrial	
	partners. Participants will be randomized into one of the following intervention	
9	groups:	
	• Group MIR-1 receiving the HMUFA diet optimal for MIR (optimal diet)	
	• Group MIR-2 receiving the LFHP diet optimal for LIR (suboptimal diet)	
	 Group LIR-1 receiving the LFHP diet optimal for LIR (optimal diet) 	
	Group LIR-2 receiving the HMUFA diet optimal for MIR (suboptimal	
	diet)	
	METC-approval for PERSON-study	Finished
	Summary: The protocol for the PERSON-study has been approved on 18 April	
	2018. 1 st amendment approved on 8 August 2018, 2 nd amendment approved	
	on 9 January 2019. 3 rd amendment approved 15 July 2019.	<u> </u>
	Predicting individual improvements in glucose metabolism in response to a	Finished
	diet with a particular macronutrient composition: A re-analysis of existing large	
	scale cohorts (WP 3.1)	
	Summary: Create and validate classifiers to predict response of an individual in terms of insulin resistance to a diet with a particular macronutrient	
	composition using existing data. In general, the classifier shows low predictive	
	power for all tested outcomes: HOMA-IR, Disposition index, hepatic and	
	peripheral insulin sensitivity, muscle insulin sensitivity index (MISI), hepatic	
	insulin resistance (HIRI), weight, BMI. For that reason, we designed a	
	hypothesis-based classifier based on analyses in the DIOGENES study,	
	available mechanistic data and literature	
	Study execution	Ongoing
	Summary: Continue with subject recruitment, retention and completion of the	
	PERSON study at UM and WUR until 120 participants have completed the	
	study at each center.	
	Design a proof of the concept intervention study for models developed.	Ongoing
	Summary: Determine yet unaccounted (by the model) factors influencing	
	glycemic responses to meals by machine learning models. Use machine	
	learning methods to determine physiological factors explaining inter-individual	
	differences in consumer perceivable benefits (mental and physical	
	performance and well-being).	
7	Perform a proof of the concept intervention study for models developed.	Planned
	• • • • • • • • • • • • • • • • • • •	
:	Summary: Test personalized model in relation to short term changes in blood glucose homeostasis and related perceived benefits in the Person study.	

Number of delivered products in 2019 (give titles and/or description of products, or a link to the products on the project website, or other public websites). Scientific presentations

- TiFN retreat, Beekse Bergen, Netherlands, 11 September 2019, poster by Kelly Jardon
- Research institute visit; Institute of Nutraceuticals and Functional Foods, Quebec, Canada, 21 October 2019; oral presentation and poster by Anouk Gijbels

- Personalized Nutrition Conference, Wageningen Netherlands, 8 Oct 2019; poster by Inez Trouwborst
- University visit; McGill University, Montreal, Canada, 24 October 2019; oral presentation by Anouk Gijbels
- University visit; University of Guelph, Guelph, Canada, 1 November 2019; oral presentation by Anouk Gijbels
- NUTRIM symposium, Maastricht, Netherlands, 27 November 2019; poster by Kelly Jardon

"Computational modelling, hybrid approach"

- MaCSBio Science day, Maastricht, 21-06-2019
- Title: Hybrid modeling approaches to study complex metabolic traits
- TiFN Retreat, Beekse Bergen, 11-09-2019
- Title: Characterizing postprandial glucose responses in individuals using a computational modelling approach
- ByteMAL, Aachen, 24-09-2019
 Title: Characterizing postprandial glucose responses in individuals using a computational modelling approach

Other outputs

- Seminar at Danone Utrecht, TiFN 16NH04 Seminar, Perceivable benefits, 17 January 2019

Scientific papers

Trouwborst I¹, Bowser SM¹, Goossens GH¹, Blaak EE¹. Ectopic Fat Accumulation in Distinct Insulin Resistant Phenotypes; Targets for Personalized Nutritional Interventions, Frontiers Nutrition 2018